
MINI-BOOK
MB81 – v1 MAY 2023

FINDING
SOFTWARE
BOUNDARIES
FOR FAST FLOW
Team Topologies and Domain-Driven Design

Team-sized software
Team-first tools and skills
Curated team interactions

Key industry insights in 5 articles

2

Finding software boundaries
for fast flow
Team Topologies and Domain-Driven Design

Effective software teams are essential for any organization
to deliver value continuously and sustainably.

Team Topologies provides a practical, step-by-step, adaptive model for
organizational design and team interaction, treating teams as the fundamental
means of delivery, where team structures and communication pathways are able
to evolve with technological and organizational maturity.

In this mini-book:

Introduction

Building Adaptive Systems for a Fast Flow of Change

About Team Topologies and Context Mapping

Exploring Team and Service Relationships with Team
Topologies and Context Maps

Architecting Your Business with Domain-Driven Design
and Team Topologies

Finding Good Stream Boundaries with Independant
Service Heuristics and User Needs Mapping

3

5

19

31

42

50

3

Introduction

Matthew Skelton, Co-author of Team Topologies

In the world of modern software development, speed is
a major differentiator. The arrival of cloud computing has
transformed the way in which software is developed and
has substantially reduced delivery times. Any organization
that cannot deliver (and sense the market) fast enough
will struggle to compete, and therefore achieving a fast flow of change is
essential. Business agility and faster software delivery requires organizations
to not only consider the technical aspects of software development but also
the social structures and team interactions. Effective flow of value requires an
understanding of boundaries between domains, something that Domain Driven
Design (DDD) has been helping to achieve for many years. However, it is also
important to understand the dependencies and interactions between the teams
that own those domains. This is something that can be achieved by looking at
the organization through a Team Topologies (TT) lens.

In 2003, Eric Evans produced the first edition of Domain-Driven Design: Tackling
Complexity in the Heart of Software with the aim of simplifying how software is
developed by allowing developers, domain experts, business owners and clients
to communicate effectively with each other in order to solve complex problems.
For nearly 20 years this book has been the cornerstone of the DDD community
and has long stood the test of time. During that time approaches to software
development have evolved, the introduction of cloud computing etc has enabled
a paradigm shift towards thinking about software boundaries differently and
optimizing for the flow of value through an organization.

The book Team Topologies by Matthew Skelton and Manuel Pais — published
in September 2019 — introduced a new way of thinking about organization
dynamics and software architecture design, via the principles of well-defined
team types and team interactions, by taking a team-first approach, and
considering cognitive load as a constraining factor on team size and team

https://www.goodreads.com/book/show/179133.Domain_Driven_Design
https://www.goodreads.com/book/show/179133.Domain_Driven_Design

4

interactions. TT provides a fresh combination of principles and practices that
help evolve organizations towards effective collaboration, autonomy, delivery
focus and product alignment ultimately enabling a faster flow of change.

Several people in the wider DDD community, especially those engaged in the
concept of socio-technical architectures, have identified some similar concepts
and intentions between DDD and TT but with subtle differences in approach that
encourage them to be complementary. This mini-book explores the similarities,
differences and crossovers between DDD and TT in a series of insightful articles
that will help you to apply the ideas from both areas effectively.

5

Adaptive Systems

Building Adaptive Systems
for a Fast Flow of Change

Susanne Kaiser, independent tech consultant

In a world of rapid changes and increasing uncertainty,
organizations must adapt and evolve continuously to remain
competitive and excel in the market. To adapt and evolve, an
organization, its business strategy, and its architecture must
be able to anticipate and absorb change.

Combining Wardley Mapping, Domain-Driven Design, and Team Topologies
helps us to connect the dots between business strategy, software design and
architecture, and team organization to build adaptive systems for a fast flow of
change.

The business strategy perspective
with Wardley Mapping

Wardley Mapping is a strategy framework invented by Simon Wardley. Wardley
Mapping helps to design and evolve effective business strategies based on
situational awareness and movement following a strategy cycle. According to
Wardley, the strategy cycle ‘is a representation of change and how we need to
react to it’. The strategy cycle consists of five sections based on Sun Tzu’s five
factors that matter when competing (or going to war):

6

Adaptive Systems

The strategy cycle starts with the purpose — the ‘why’ of the business. The
purpose represents the reason why customers choose your business over
others and what inspires the customer to act. The landscape is a description
of the competitive environment in which an organization is operating. The
landscape is visualized by the Wardley Map. The climate consists of patterns
that describe external forces and rules impacting the landscape, over which
we have no control. Discovering and understanding the climatic patterns is
important to see how the landscape is changing. Some of the climatic patterns
can be anticipated, providing a competitive advantage. The doctrine describes
universal, context-independent principles that all organizations can apply
regardless of their landscape. These are principles for successful operation that
enable organizations to absorb and adapt gracefully to a fast flow of change
(organizational fitness). The leadership is the context-specific decision-making
component of the organization: what strategy to choose, considering the
landscape, climate, and doctrine.

In this article, we are focusing on the landscape and some doctrinal principles.

Figure 1: The strategy cycle of Wardley Mapping

7

Adaptive Systems

Visualizing the landscape - the Wardley Map

The landscape is a description of the environment in which an organization is
operating and competing. The landscape is represented on a map called the
Wardley Map. The Wardley Map is composed of a y-axis depicting a value chain
and an x-axis representing evolution stages. A value chain describes what is
needed to add and deliver value to a user. Creating a Wardley Map starts with
defining the value chain. From top to bottom, a value chain consists of users,
user needs, and components fulfilling the user needs directly or facilitating other
components in the value chain. Components at the top are most visible with
the biggest value to the users, e.g. where users are interacting directly with
the system. The components at the bottom are less visible to the users. Users
and user needs form the anchor of the map; all subsequent components are
positioned in relation to these elements.

Let’s build an example value chain for a conference event planning solution that
enables conference organizers to manage an event (see figure 2).

This solution mainly addresses the conference organizers and speakers as users.
To identify the users’ needs we can articulate a user journey. The conference
organizers start their user journey with managing a call for papers (CfP) to which

Figure 2: Example of a value chain for a conference event planning solution.

8

Adaptive Systems

the speakers can submit their session proposals. The organizers need to evaluate
the submitted session proposals, build and publish a schedule from the accepted
sessions, and communicate with the speakers. Both conference organizers and
speakers need to sign-up and sign-in as well.

In the next step, we go further down the value chain and identify the
components that fulfil the users’ needs. We start with a single conference
event planner component that contains the business functions that fulfill the
aforementioned user needs directly. Later, we are splitting each component
into smaller parts when bringing in the Domain-Driven Design perspective. The
conference event planner component needs to store some sort of state. For that
purpose, we need a data storage component that facilitates the conference
event planner component. It is less visible to the user, so is positioned further
down on the y-axis. For search functionality and event-driven, decoupled
communication, we need to integrate a search engine and a message broker.
They both facilitate the conference event planner component. The conference
event planner component, data storage, search engine, and message broker
need an environment in which their software is executed: the compute platform.
This compute platform is running on top of a virtual machine.

Once we have defined the value chain, the next step is to map each component
of the value chain to evolution stages on the x-axis. The evolution stages start
with Genesis on the left, a stage that involves addressing the characteristics of
new, undefined, and constantly changing components. Then comes ‘Custom-
Built’, then ‘Product’ (+rental), such as off-the-shelf products or open-source
software, then ‘Commodity’ (+utility).

As the components of a value chain evolve, their characteristics change.
Asking about the characteristics of each component helps us to identify which
component belongs to which evolution stage. For example, how well-understood
and well-defined is the component? Is the component available as a product
or utility service or is it rather new? How widespread is this component? Are all
competitors using this component? Is this component providing a competitive
advantage? Our conference event planner component, providing a competitive
advantage, shall go into ‘custom-built’. We are planning to use open-source
solutions for the search engine, data storage, and message broker components,
which locates them in the ‘product’ (+rental) evolution stage. The components
are going to be packaged in containers as a compute platform running on top

9

Adaptive Systems

of a cloud-hosted virtual machine residing in the ‘commodity’ (+utility) evolution
stage.

Before switching to the climatic patterns as the next section of the strategy
cycle, we would like to focus on the conference event planner component by
bringing in the Domain-Driven Design perspective. This helps to analyze and
understand the problem domain and partition the problem domain into modular
parts.

The Domain-Driven Design perspective

Domain-Driven Design (DDD) is about designing software based on Domain
Models, as proposed by Eric Evans in his book, Domain-Driven Design: Tackling
Complexity in the Heart of Software. The core concept of DDD is that to build
better software, its design needs to align with the business domain, business
needs, and business strategy. Before diving straight into developing a technical
solution that solves the user needs, it is necessary to understand the problem
domain, and that’s where DDD is very helpful. An essential part of DDD is the
collaboration between domain experts and development teams. They analyze the
problem domain to obtain domain knowledge. The problem domain or business
domain refers to the scope, area, or process of an organization. The domain

Figure 3: Example of components mapped to evolution stages.

10

Adaptive Systems

knowledge should be free of technical jargon and described in terms of a shared,
business-domain oriented language - the ubiquitous language.

DDD comes with patterns and practices consisting of strategic and tactical
design. To illustrate these, I would like to reuse the y-axis of a Wardley Map
and apply a top-down approach. We start with the problem space of strategic
design at the top and go to the solution space of tactical design at the bottom.
Analyzing the business domain and discovering subdomains as subparts of
the problem domain help to build the problem space of strategic design. In
connection with Wardley Mapping, the problem domain can be considered as
the users and their user needs.

When we switch to the strategic design’s solution space, we start by
decomposing the problem domain (including subdomains) into modular
components (the Bounded Contexts) and mapping interaction patterns between
them (the context maps). Later, when we architect and implement a solution
fitting the problem domain, we are moving to the tactical design’s solution
space.

In this article, we are focusing on strategic design with its subdomains and
Bounded Contexts and leaving out context maps and tactical design (for
simplicity).

Figure 4: Strategic and tactical patterns & practices of DDD.

11

Adaptive Systems

Discovering subdomains and determining
their evolution stages

Distilling the business domain reduces complexity by partitioning the broad,
abstract business domain into smaller, concrete parts: the subdomains. However,
not all subdomains are equal. Some are more valuable to the business than
others and this is reflected by assigning them a category: core, supporting,
or generic (see Figure 5). These different categories can help us find the
subdomains and prioritize the development effort.

The subdomain categories can be mapped to evolution stages. One of Wardley’s
mapping principles is to use appropriate methods for each stage. There is
no one-size-fits-all method, but appropriate methods per evolution stage,
since each evolution stage comes with different characteristics that need
to be handled differently. For Genesis and Custom-Built, it’s appropriate to
build the components in-house, preferably using agile methods. For product
(+rental), it’s more appropriate to use or buy off-the-shelf products or use
open-source solutions, preferably using lean methods. For commodity (+utility),
it’s appropriate to outsource to utility suppliers, preferably applying Six Sigma
methods.

Figure 5: The subdomain categories and their evolution stages.

12

Adaptive Systems

The core domain is the essential, business-critical part of the problem and it
provides a competitive advantage. The core domain should be complex enough
to make it difficult for competitors to copy or imitate. This subdomain tends
to change often. The core domain is the subdomain to strategically invest in
most and is supposed to be built in-house, residing predominantly in Genesis
or Custom-Built stages. For example, the core domains for the conference
event planner could revolve around managing the call for papers, handling
submissions, evaluating sessions, and building the schedule.

The supporting subdomain helps to support the core domain but does not
on its own provide a competitive advantage. It tends to be quite simple and
does not change often, but might - in some cases - require some form of
specialization. If possible, buying or using off-the-shelf products or using open-
source software is a good approach. For this reason, the supporting subdomain
is mapped to the Product (+rental) evolution stage. If some level of specialization
is required, custom-building the supporting subdomain might be necessary.,
In this case, the supporting subdomain moves into the Custom-Built evolution
stage. In the context of the aforementioned conference event planner, the
messaging subdomain is a candidate for a supporting subdomain. It does not
provide a competitive advantage but supports the core domain in such a way
that it eases the interaction between the conference organizers and the speakers
during the conference event planning process.

The generic subdomain is a subdomain that many business systems have.
Examples include authentication and payment services. The generic subdomain
is not core and does not provide a competitive advantage but is a category of
products that businesses cannot work without. They can be complex but already
solved by someone else. For the generic subdomain, it makes sense to buy or
use off-the-shelf products or use open-source software or outsource to utility
suppliers. This means that the generic subdomains are predominantly located in
the Product (+rental) or Commodity (+utility) evolution stage. For the conference
event planner, the identity and access management service that fulfills signing-in
and signing-up of users is a good candidate for a generic subdomain.

Domain Models and Bounded Contexts

At this point, we have identified the subdomain categories in the problem
space of strategic design. When switching to the solution space of strategic

13

Adaptive Systems

design, the next step is to decompose the solution, in this case the conference
event planner, into modular components — the Bounded Contexts. A Bounded
Context defines where a single Domain Model can be applied. A Domain
Model represents the domain logic and business rules that are relevant to that
area of the system. It forms a unit of mastery, purpose, and autonomy. But, a
Domain Model cannot exist without a boundary, and that’s where the Bounded
Context comes in. A Bounded Context provides different types of boundaries. A
Bounded Context forms a linguistic and semantic boundary around the Domain
Model so that the language of the Domain Model is consistent and clear inside
its Bounded Context. A Bounded Context serves as an ownership boundary: it
should be implemented by one team only, but a single team can own multiple
Bounded Contexts. A Bounded Context also serves as a physical boundary and
can be implemented as a separate solution. In addition, the architectural and
business logic implementation patterns can vary from context to context.

Conversations between domain experts and development teams about
identifying the main outcomes of development may result in Bounded Contexts
and Domain Models.

At some point, we might encounter ambiguity. For example, a Domain Model
called ‘session’ may have more than one meaning. A session scheduled for
the agenda has different attributes and business rules from a session proposal
submitted by a speaker. This requires adjusting the ubiquitous language
(‘session’) by introducing the phrases ‘submitted session’ and ‘scheduled
session’ to make the meanings consistent and clear. Adjusting the language is a
good indicator of a Bounded Context.

There are several techniques available to derive Bounded Contexts and Domain
Models, such as EventStorming, Domain Storytelling, Example Mapping, User
Story Mapping, etc.

For our example, we derived the Bounded Contexts of submission handling, CfP
management, session evaluation, schedule management, messaging, and identity
and access management. We placed them in their evolution stages according to
their related subdomain categories (see Figure 6).

14

Adaptive Systems

Strategic design and Wardley’s Doctrine

The strategic design also helps to apply universal principles of Wardley’s
Doctrine (see Figure 7). At DDD’s center is the close collaboration between
domain experts and development teams, enabling us to analyze the business
domain and challenge assumptions. Through this collaboration, we are gaining

Figure 6: Bounded Contexts mapped to evolution stages.

Figure 7: Strategic DDD applying Wardley’s Doctrine.

15

Adaptive Systems

domain knowledge, which helps us to know the details of the business domain.
The domain knowledge is described in a shared language. Discovering the core
domain that provides a competitive advantage lets us focus on high situational
awareness and understand the landscape in which we are operating and
competing. Decomposing our system into modular Bounded Contexts enables us
to partition our problem domain into smaller contracts. Bounded Contexts form a
unit of mastery, purpose, and autonomy that conforms with the related doctrinal
principle. The subdomain categories can be mapped to evolution stages, which
leads to using appropriate methods per evolution stage.

After having visualized the landscape with a Wardley Map, discovered
subdomain categories and their evolution stages, and decomposed the problem
domain into Bounded Contexts, we next need to bring in the team organization
perspective.

The team organization perspective
with Team Topologies

Conway’s Law states that ‘any organization that designs a system [...] will
produce a design whose structure is a copy of the organization’s communication
structure’. For example, an organization composed of functional silo teams, such
as UI-, backend-, and database-administration teams will inevitably produce
a multi-tier architecture consisting of presentation, business logic, and data
storage tiers. There's nothing wrong with multi-tier architecture in general, but
when implementing a change across several tiers requires handover between
multiple teams, we increase communication and coordination efforts between
teams, introducing bottlenecks, which impede delivery performance.

To optimize for a fast flow of change, we need to avoid functional silo teams and
handovers. Instead, we need to aim for autonomous, cross-functional teams that
are designing, developing, testing, deploying, and operating the systems for
which they are responsible. Small, long-lived teams need to own the systems or
subsystems on which they work. Minimizing the team’s cognitive load is essential
to avoid delivery bottlenecks. While communication within a team is desired, we
have to restrict high-bandwidth communication between teams to enable fast
flow.

And that’s where Team Topologies comes in, as it ‘advocates for organization

16

Adaptive Systems

design that optimizes for flow of change and feedback from running systems.’
Team Topologies introduces four well-defined team types (see Figure 8) and
three well-defined interaction modes (see Figure 9), promoting organizational
effectiveness.

Stream-aligned Teams are aligned to a continuous stream of work, e.g. a
product, a service, a set of features, etc. They have end-to-end responsibility
and aim to produce a steady flow of feature deliveries and incorporate feedback.
To focus on a fast flow of change, the stream-aligned teams rely on the other
team types that aim to increase the autonomy of the stream-aligned teams
and reduce their team cognitive load. Platform Teams are responsible for
platforms that typically abstract away infrastructure, networking, and cross-
cutting capabilities. They provide internal, self-service resources and tools for
easily consuming that platform. Enabling Teams help other teams to acquire
missing capabilities, e.g. making suggestions on tooling, practices, and
frameworks. Complicated Subsystem Teams support other teams on particularly
complicated subsystems that require specialized knowledge.

Team Topologies also introduces three interaction modes (see Figure 9) for
organizational effectiveness. With collaboration, teams work very closely
together.

Figure 8: The four team types of Team Topologies.

17

Adaptive Systems

Figure 9: The three interaction modes of Team Topologies.

Collaboration is suitable for rapid discovery and innovation, e.g. when
discovering new technologies. X-as-a-Service suits well when one team needs
to use a code library, component, API, or platform that can be effectively
provided by another team ‘as a service’. Facilitating comes into play when one
team would benefit from the active help of another team. This interaction mode
enhances the productivity, effectiveness, and flow of the help-receiving team.

Architecture for flow

Let’s put the three perspectives together and apply Team Topologies to our
previously created Wardley Map including subdomain types and Bounded
Contexts. Optimizing for a fast flow of change requires knowing where the
most important changes in a system occur - the streams of changes. The first
step in applying Team Topologies is identifying suitable streams of change. The
previously identified user needs represent activity-oriented streams of change.
Next is finding suitable team boundaries. The Bounded Contexts represent
good team boundaries for stream-aligned teams as they serve as well-defined
ownership boundaries forming a unit of purpose, mastery, and autonomy. Clear
responsibility boundaries are necessary to optimize for team cognitive load.
Assigning Bounded Contexts to a single team rather than sharing them across
teams creates clear ownership. However, one team can own several Bounded
Contexts. In addition, we need to match the boundary size to the team cognitive
load and limit the number and complexity level of Bounded Contexts per team.
The next step is to identify services needed to support a reliable flow of change.
That brings the focus on the platform-related components of our Wardley Map,
located in the Product (+rental) and Commodity (+utility) evolution stages. To
focus on a fast flow of change, the stream-aligned teams rely on a platform team

18

Adaptive Systems

providing an easily consumable platform-as-a-service. The platform team might
start with a thinnest viable platform that is ‘just big enough’ and can evolve later
into a digital platform with self-service APIs and tools. That might result in a
team constellation illustrated in figure 10.

Team Topologies and Wardley’s Doctrine

The combination of the four team types and the three interaction modes of Team
Topologies promotes organizational effectiveness also from the perspective
of Wardley’s doctrine (see Figure 11). Team Topologies helps to apply the
doctrinal principles of ‘thinking small as in teams’, optimizing flow and reducing
bottlenecks, providing purpose, mastery, and autonomy, and designing for
constant evolution, where the system can handle a constant flow of changes
without the need for constant restructuring.

About the author
Susanne is an independent tech consultant from Hamburg, Germany with a background in computer
sciences and experience in software development for more than 17 years. Susanne is the author of
Adaptive Systems with Domain-Driven Design, Wardley Mapping, and Team Topologies: Architecture for
Flow and can be found at various international tech conferences as a speaker, co-organizer, or program
committee member.

Twitter: @suksr

LinkedIn: susannekaiser1

Figure 10: Possible team constellation.

https://twitter.com/swardley/status/1158762383784984578?lang=en
https://twitter.com/suksr
https://www.linkedin.com/in/susannekaiser1/

19

Context Maps

About Team Topologies and
Context Mapping

Alberto Brandolini, EventStorming Creator
and founder of Avanscoperta

The concept of Team Topologies, as depicted in the book
by Matthew Skelton and Manuel Pais, is getting worldwide
attention. Its focus on team structure and purpose is opening
interesting discussions and many organizations are adopting
the model as a reference for the organization of development teams.
At the same time, Domain-Driven Design (DDD) practitioners have a sense of
deja-vu since the problem space seems to overlap with some of the advanced
concepts of Context Mapping found in DDD. This is my attempt to see the best
of both worlds and the pros and cons of the different approaches.

The problem space is mainly uncharted territory

Pais and Skelton hit a nerve with their book. Most organizations grow organically
under the pressure of a never-empty backlog. As a result, teams growing in
size will have to be split and competencies will progressively become more
narrowed and specialized. However, the few criteria driving the splitting have
been debated endlessly. Whichever the adopted decision - cut around business
capabilities vs. cut around technical skills - the outcome is never perfect, leaving
the decision-makers with a feeling of maybe the other approach could have been
better...

To make matters worse, every organization places the responsibility of sizing and
structuring teams in different hands: is this the responsibility of a team leader
or head of development? Or CTO, maybe? Do we need a specific role for that?
Do we always need to escalate to the ecosystem level or is the collaboration
between teams just a local issue?

20

Context Maps

Have you been Spotified?

This lack of reference models also explains the popularity of the Spotify Model.
An organization that dared to experiment with a different model for team
structure and collaboration quickly became a source of inspiration, with a lot
of unintended consequences. As also happened with lean and Toyota, other
organizations followed the model, without paying too much attention to the
ingredients that made it viable in that specific context.

In short, most nontrivial software development organizations experience some
kind of friction in this space. Collaboration between software teams is one of the
fundamental traits of successful companies, but frictionless collaboration seems
to be a chimera, so it’s not a surprise if IT professionals are seeking guidance.

Team Topologies categorizations

Team Topologies describes four team types:

• Stream-aligned Team focused on a specific business capability, ideally
cross-functional;

• Platform Team providing common services to other teams;
• Complicated Subsystem Team with high specialization and specific

knowledge about one portion of the system;
• Enabling Team experts who mentor and help other teams to evolve and

improve.

While these concepts are not new — they stem from observation of many
different ecosystems — it is interesting to see that they provide a vocabulary and
a reference model. You may want to consider this list of archetypes as attractors
for what a good team should be, but you should also note that there are only four
of them!

Some weird things your organization is doing aren’t listed here, maybe for a
good reason. These are reference implementations for teams that work well
together.

21

Context Maps

Three interaction modes

In terms of relationships between teams, only three patterns are described:

• Collaboration when two teams are working closely to a common goal for a
limited period of time;

• X-as-a-service when there is a contact in terms of usage, potentially on an
ongoing basis, but little specific collaboration;

• Facilitation, when a team is helping another to overcome impediments for a
limited period of time.

Once again, the list is short (so patterns that are not listed are interesting for
their absence), and the patterns are attractors. Failing to define the type of
engagement will leave space for ambiguities that will turn into frictions and
delays.

Figure 1: The Four Team Types and the Three Interaction Modes, directly from Team Topologies.

22

Context Maps

Context Mapping patterns

Strategic Domain-Driven Design offers an interesting point of view on the same
problem space, but with different constructs.

There is little explicit reference to teams but the focus is mostly on Bounded
Contexts (BCs) under the assumption that in a mid-sized software organization,
there will be a close mapping between the two concepts.

Are Bounded Contexts teams?

No, Bounded Contexts are defined as the limit of applicability of a given model.
But the sophisticated domain understanding that is a fundamental ingredient of
Domain-Driven Design, is only possible if a single team is responsible for a given
portion of the model. They need to connect on the entire socio-technical stack
(talking to business representatives, writing and testing the code, interacting
with users, and so on).
There’s some well-accepted wisdom in the DDD community about it, so, let’s
make it explicit.

One team, multiple Bounded Contexts

Can a single team manage multiple BCs? Yes, this is the norm in small-sized
organizations.

But, well... most small organizations don’t seem to care much about boundary
separation. In fact, the only way to achieve good separation is to explicitly
enforce it: from big visible maps to segregation of the codebase.

The hardest thing to manage is in fact the cognitive load of the developers,
especially if the backlog priorities force them to switch from one Bounded
Context to another.

One can only be deeply focused on one model at a time. But without strong
boundaries, it will be very easy to blur concepts that shouldn’t be mixed. Just
like working in a chocolate shop without ever eating it. The odds are not in your
favor.

23

Context Maps

Whilst one team/many models can happen, you’ve got to be very good at
making the boundaries explicit.

More teams, one BC

Can we have two teams working on the same model? Apparently, yes. I mean:
drawing it seems straightforward.

Figure 2: A single team working on multiple Bounded Contexts will pose some specific challenges.

Figure 3: More teams on a shared Bounded Context seems like a highway to a Big Ball of Mud (BBoM).

24

Context Maps

Unfortunately, two teams in the same Bounded Context is usually a prelude to
a riot. Teams typically have different backlogs and priorities and ambiguity will
quickly rot in the codebase, accelerating the transition towards a Big Ball of Mud
(BBoM). In general, BCs won’t be so big as to justify multiple teams working on
them. So... No.

Interestingly, the Spotify model seems to move a little in that direction,
relaxing the ownership of the codebase. This reduces coordination costs (the
communication bandwidth, again), while mitigating the risks of decreasing
quality through strong engineering practices. However, they don’t have a BIG
shared Bounded Context, but many smaller ones with relaxed ownership rules.

One team per BC

The perfect choice seems to be one team per Bounded Context.

One team, one Bounded Context. It seems the way to go, on paper.
But… some details are left out of the picture. Like organization size, for example.
I counted 20 different Bounded Contexts in our internal software the last time
that I checked. Does it mean that we need 20*(7±2) developers to write our
software? For a company of 6? Come on!

Size isn’t the only problem here: the different BCs are not evolving at the same

Figure 4: One team per Bounded Context could be the ideal, but there are challenges to manage.

https://wiki.c2.com/?BigBallOfMud

25

Context Maps

pace. Some will be growing, others will stabilize and ideally be left untouched
for a long time. But, the notion of an idle team isn’t popular in the enterprise; one
risk being filling up a backlog just because the team is available. The association
between a team and a Bounded Context is temporary and will change over time.

Collaboration Patterns

The focus of Context Mapping isn’t on the shape of the teams but on the
relationships between models that have to support collaboration. One interesting
concept is that of being upstream or downstream: mapping the political
influence that parties hold within one model versus the other. Based on this type
of reasoning, we have a few patterns describing possible collaboration types.
Here is a quick summary:

• Partnership: two teams are mutually dependent and collaborate towards a
common goal.

• Customer-Supplier: the goal is still common, but the dependency is less
symmetrical, and priorities may differ. Negotiations are however possible.

• Conformist: no negotiations here. One model is adopted with minimal
changes on the other side. The downstream party just gets what they are
given.

• Anti-Corruption Layer: still on the downstream side, but we are not
adopting the external model. In fact, we’re writing a thick adapter to keep
our model strictly separated from the outside one.

• Open-Host: on the upstream side, our model can be made available to
external users, on our conditions. Of course, we’ll need to make these
conditions explicit with documentation and so on.

• Published Language: a common language on the communication channel
could make a larger conversation possible, especially if the conversation
language is maintained by a third party.

• Shared Kernel: a small portion of the software could be in common
between different models, but this implies superior attention and quality in
touching this code, not to mention the dependencies.

• Separate Ways: the best dependency is the one we don’t have. Sometimes
keeping things separated is the way.

• Big Ball of Mud: when boundaries are not in place and the codebase
becomes a scary place to work in.

26

Context Maps

In DDD, this categorization becomes interesting when drawing a Context Map
which is a useful artifact in a brownfield scenario. Drawing the map forces me to
ask the relevant questions before starting the project. For example, I’d wave a
red flag if my team was expected to be conformist on an unreliable platform, on
a critical project for the business.

Satellite concepts

Since the early days, I enjoyed the ability of Context Mapping Patterns
to capture the cost of the different approaches on different currencies. A
Partnership requires less code but a lot of conversational bandwidth, while an
Anti-Corruption Layer goes exactly in the opposite direction, writing more code
since no conversation is possible. Conformist will let you go with little code and
conversation, but asking a tribute in reduced quality instead. No such thing as a
free lunch!

Conversational bandwidth is the key currency here. Collaboration won’t happen
if there’s not enough bandwidth to support it.

Comparing the two approaches

The most obvious difference between Team Topologies and Context Mapping is
that the latter doesn’t explicitly talk about teams, but about models instead. On
the other hand, Team Topologies suggests optimizing for cognitive load, which

Figure 5: We can visualize bandwidth in a Context Map, with the thickness of the relationship.

27

Context Maps

maps pretty well to the notion of having one team per Bounded Context.

Present or future state

Talking about the different collaboration patterns, there’s some overlap between
the TT and DDD approaches, like DDD Open-Host and TT Platform Team, or
DDD Partnership and Customer-Supplier with TT Collaboration. But the most
interesting difference seems to be another one.

Team Topologies provides a reference towards a desirable to-be state, while DDD
Context Mapping provides more fine-grained patterns for assessing the current
state.

A Big Ball of Mud is clearly not a desirable state, but it’s part of the dictionary
needed to describe your horrible daily reality. I use Context Mapping to map the
future state, but mainly as a software design tool, not so much as an organization
design tool. Team Topologies seems to have an edge in being used as a
reference model there.

Choices have consequences

One thing that the two approaches have in common is the ability to make the
consequences of team-model allocation decisions explicit. Collaborations
are costly and these costs need to be properly accounted for. I’ve been in too
many places where the management was inviting teams to communicate more
while filling backlogs and adding deadlines, making communication virtually
impossible.

The Team Topologies lightweight dogmatism of ‘there are only 3 types of
interaction’ (paraphrased) is a good way to force management to make choices
and own consequences. Just telling people to collaborate and communicate is not
a strategy.

At the same time, quickly updating our current-state Context Map is still a great
way to detect bullshit and inconsistencies in the current state of collaborations.

28

Context Maps

• “We are collaborating with team A. We have meetings every week!”
 Customer-Supplier?

• “They just say ‘No’ to every single thing we ask.” No... Conformist.

Fracture planes

Team Topologies talks about fracture planes as a natural way to decompose the
system into different streams. But I am too much into Domain-Driven Design to
fall in love with this metaphor. Well, I know there are ideal places for cutting
the system into loosely coupled Bounded Contexts and effectively splitting
responsibilities between teams; I wrote an entire chapter in my book Introducing
EventStorming about how to extract this information from a Big Picture
EventStorming.

But… I also know that when it comes to breaking the monolith, it’s never about
cutting slate. It’s more like chopping trees where there are branches and nodes.
You’ll try to follow the line, but you’ll realize that something isn’t getting
separated that easily: there will be something that is shared in the wrong way, but
that’s also big and dangerous to play with.

Figure 6: A Big Picture EventStorming will provide a massive amount of information about how to
decompose your enterprise software system.

Figure 7: It can be a big class, a large table, or a combination of both. The big mess at the center of
everything.

https://www.eventstorming.com/book/
https://www.eventstorming.com/book/

29

Context Maps

And this is where the metaphor sounds a little too easy for me. There are ways
to deal with this problem (I talked about it in an old presentation: What lies
beneath), but they require a given degree of mastery.

What’s left out?

A few concepts are part of the game but seem to be missing from the
conversation.

• Organization size: Team Topologies starts being interesting when your
development shop has 20 or 50 or more people, while you’ll have Bounded
Contexts also when you’re coding in solo mode.

• Business pressure & portfolio management: designing the perfect
harmony between teams will fail miserably without some health check
in terms of backlog pressure. If teams are under pressure, a healthy
collaboration will not happen, but I still see too many organizations unable
to plan for multiple dependent teams.

A journey, not a destination

I kept my favorite thought for last: I think the most important outcome of the
discussion around Team Topologies nowadays is about what a good desirable
state looks like. Most organizations have never seen a healthy organization (harsh
but true), so providing a reference model is definitely a good thing.

Please don’t fall into the trap of considering such a desirable state as stable or
solving the problem of team structure once and forever. Every solution will be
ephemeral by design. Collaborations are temporary and will need to be reviewed
whenever the context changes. But you’ll definitely have better tools to make the
right decision.

About the author
EventStorming Creator, author of Introducing EventStorming – An act of deliberate collective learning and
Founder of Avanscoperta, Alberto Brandolini is an all-around consultant in the Information Technology
field. Alberto is a frequent speaker at software development related conferences in Italy and all over the
world since rumors spread about his funny attitude. Besides consulting and running Avanscoperta, he has
also been a trainer for UK-based company Skills Matters, where he taught Domain-Driven Design.

Twitter:@ziobrando

LinkedIn: brando

https://www.slideshare.net/ziobrando/what-lies-beneath-246741981
https://www.slideshare.net/ziobrando/what-lies-beneath-246741981
https://twitter.com/ziobrando
https://www.linkedin.com/in/brando/

Learn
Academy

Increase awareness at scale with
on-demand video learning on
the Team Topologies Academy:

• Team Topologies Distilled
• Platform as a Product
• Team Topologies for Managers
• Independent Value Streams

with Domain-Driven Design
• and more

Live online

Learn core Team Topologies
principles and patterns with
live online workshops delivered
by official partners.

teamtopologies.com/learn

https://teamtopologies.com/learn

31

Context Maps

Exploring Team and Service
Relationships with Team
Topologies & Context Maps
Michael Plöd, Fellow at INNOQ

Over the past two years, there has been a great deal of
enthusiasm in the Domain-Driven Design community around
the book Team Topologies by Matthew Skelton and Manuel
Pais. In particular, the book has been praised in the highest
of terms by community members who are intensively involved
with the topic of sociotechnical architectures. Team Topologies is primarily
about setting expectations for team behavior and interactions (and therefore
setting expectations for software behavior and interactions). In doing so, the
authors have created an appealing verbal and visual language. However, in the
area of strategic Domain-Driven Design there are also Context Maps, which
focus at least partially on similar topics. This article will highlight where Team
Topologies and Context Maps are similar, where there are differences, and, most
importantly, how to combine both ideas well.

Introduction to Team Topologies and Context Maps

Team Topologies defines four different kinds of teams:

• Stream-aligned Team: aligned to a single valuable stream of work.
• Complicated Subsystem Team: builds and maintains a part of the system

that depends heavily on specialist knowledge.
• Platform Team: provides a platform on which Stream-aligned Teams can

deliver work autonomously.
• Enabling Team: Contains specialists who coach or mentor other (mostly

stream-aligned) teams.

32

Context Maps

In addition, there are three different modes of interaction between those teams
in Team Topologies:

• Collaboration
• X-as-a-Service
• Facilitating

Team Topologies uses a clear visual language:

Stream-aligned Teams are shown as a yellow rounded rectangle (always
horizontally to emphasize a left-to-right flow of change). Enabling Teams (in red)
effectively ‘cut across’ the flow of change and are therefore shown vertically.
Complicated Subsystem Teams deal with a discrete subsystem - shown as an
orange octagon (or sometimes an orange diamond). Platform Teams are shown as
a blue rectangle.

The Collaboration interaction mode is shown as a purple parallelogram. The
X-as-a-Service interaction mode is shown as a gray triangle. The Facilitating
interaction mode is shown as a green circle.

Figure 1: The visual language of Team Topologies

33

Context Maps

More details about the Team Topologies visual language can be found at
shapes.teamtopologies.com

Context Maps were introduced 18 years ago in the original Domain-Driven
Design book by Eric Evans. They define three types of team dependencies and
7 patterns. Vaughn Vernon added two additional patterns in his Implementing
Domain-Driven Design book. Context Maps focus on the relationship between
Bounded Contexts and the teams responsible for those Bounded Contexts.
A Bounded Context can be defined as a boundary for a model expressed in
a consistent ubiquitous language tailored around a specific purpose. Newer
perspectives also mention the Bounded Context as a team-first boundary which
minds the cognitive load of a team. The Team Topologies book itself dedicates a
small chapter to this concept.

The team dependencies according to Context Maps are:

• Mutually Dependent: the actions of each team have an impact on the other
team.

• Upstream / Downstream: The actions of one team have an impact on the
other team, but no vice-versa.

• Free: there is no impact of actions on the other teams.

The patterns of Context Maps are determined by various questions like:

• Who provides services / interfaces (e.g. Open-host Service, Published
Language)?

• How do systems deal with Domain Models (e.g. Conformist, Anticorruption
Layer, Shared Kernel)?

• Who can raise requirements against others (e.g. Customer-Supplier)?
• How about the relationship between teams (e.g. Partnership, Separate

Ways)?
• Which parts of a system are a mess (e.g. Big Ball Of Mud)?

An overview and description of all of the Context Map patterns can be found at
github.com/ddd-crew/context-mapping.

https://shapes.teamtopologies.com
https://github.com/ddd-crew/context-mapping

34

Context Maps

How do Team Topologies and Context Maps correlate?

There are a couple of similarities between the two approaches. Both address the
relationships between teams and to a certain degree the systems that they build.
However, there are enough differences that make it interesting to combine both
concepts.

The similarities

Both ideas address the relationships between teams. Team Topologies focuses
on this topic, whereas Context Maps contain various patterns that describe
team-specific situations. In addition, there is a high degree of similarity between
the Context Map’s ‘Open-host Service’ pattern and the X-as-a-Service team
relationship from Team Topologies. Both concepts also contain ways to describe
a close collaboration between two teams and their systems. Team Topologies
uses the Collaboration interaction mode for this while Context Maps use mutual
dependency and the Partnership pattern for this scenario.

Figure 2: Similarities and differences between Team Topologies and Context Maps.

35

Context Maps

The differences and how to combine the approaches

The first and foremost difference is in the perspective of each approach.
Context Maps first of all address the contact between Bounded Contexts whilst
Team Topologies has a team-first perspective. In an ideal world, this would not
be a big issue, since one would aim for a strong alignment between Bounded
Contexts and teams. In this case, both Context Maps and Team Topologies will
fit perfectly.

However, in the real world, we very often see one team being responsible for
multiple Bounded Contexts:

Figure 3: Visualizing a 1:1 relationship between teams and Bounded Contexts.

Figure 3: Visualizing a 1:1 relationship between teams and Bounded Contexts.

36

Context Maps

Since the Domain-Driven Design world does not talk about types of teams but
Team Topologies does, we can combine both ideas. What kind of a team is it that
is responsible for one or more Bounded Contexts? The suitable candidates are:

• Stream-aligned Teams
• Platform Teams
• Complicated Subsystem Teams

Note: The Enabling Team type from Team Topologies is not shown in this scenario
because Enabling Teams do not have responsibility for business capabilities.

Another aspect with a great deal of potential for a combination of both
approaches is the X-as-a-Service relationship of Team Topologies. In this
scenario, ‘one team consumes something that another team provides’ (Quote
from the Team Topologies book). The corresponding concepts in the Context
Map are an Upstream/Downstream relationship between two teams with an
Open-host Service on a Bounded Context providing/exposing functionality.

From this starting point lies a big potential for further deep dives into the
relationship. In this case, you can get started with adding the team boundaries
and team types to the Context Map. As a next step, we can dig deeper into this

Figure 5: X-as-a-Service and Upstream/Downstream with an Open-host Service.

37

Context Maps

X-as-a-Service relationship by using some of the Context Mapping patterns.
We can visualize how the Domain Model provided by the Open-host Service
propagates into the other Bounded Context by using the Anticorruption Layer
and/or the Conformist pattern. This option allows you to take a closer look at
how tightly or loosely two Bounded Contexts and even teams are coupled. Even
if a team just consumes a service being provided, there is still a chance of a tight
coupling on the downstream side if they conform to the model provided.

Another option that you can explore is whether or not the consuming side has
or should have some influence on the providing side. I am aware that this is not
the key intention of the X-as-a-Service relationship in Team Topologies, but
there is something in between a very close collaboration between two teams and
one team providing services in a ‘take it or leave it’ manner. This scenario can
be described by the Customer-Supplier pattern: one team will typically have a
certain, well-defined right to raise requirements against the other team.

Here are two examples. The image below depicts a Complicated Subsystem
Team in the upstream which is responsible for multiple Bounded Contexts and
provides a service to a Stream-aligned Team in the downstream which uses an
Anti Corruption Layer:

Figure 6: A relationship between a Complicated Subsystem Team and a Stream-aligned Team.

38

Context Maps

The next scenario depicts two teams in a X-as-a-Service relationship in which
the downstream (consuming) side may be allowed to raise some requirements for
the provider.

One more aspect that the team relationships of Team Topologies address rather
indirectly is organizational solutions or manual steps. By organizational solutions
or manual steps, I mean the lack of integration between two Bounded Contexts.
Integration is often cumbersome and expensive to implement. Therefore, some
teams avoid the effort and go for manual processes with minimal support from
software. This is especially interesting when we aim to build Minimum Viable
Products (MVPs). In this case, it is often viable that some back-office process
steps do not get triggered through a perfectly implemented integration between
the Bounded Contexts of two teams but rather through manual processes. Let’s
take a mortgage loan application as an example and think of two Bounded
Contexts with corresponding teams: a loan application and a contract proposal.
We don’t expect many contracts in the first few months, so manually sending
contract proposals may be a good idea for a minimum viable product.

Figure 7: A Platform Team and a Stream-aligned Team in a X-as-a-Service relationship.

Figure 8: Two Bounded Contexts within a mortgage lending business that may give rise to a manual
process (in the MVP state).

39

Context Maps

Which Team Topologies relationship would exist between those two teams?
Still, X-as-a-Service, because there is still a (manual) service involved? I think
it is better to make this relationship more explicit by adding the Separate Ways
pattern to the observation. Yes, a service is being provided, but not with a
perfectly implemented integration.

Summary

Team Topologies and Context Maps have a certain degree of overlap in their
intention. However, both can be combined in a variety of ways to unlock
deeper insights into the relationships between teams and Bounded Contexts.
As a starting point, I suggest beginning with Team Topologies and adding the
Context Map patterns as needed. But please, don’t overload your diagrams with
everything you can squeeze into them, because they will become very hard to
understand. Always keep the readers of your diagrams in mind: you are creating
the diagrams for them, not for yourself. 😀

Figure 9: Two teams in a X-as-a-Service relationship but with a Separate Ways pattern.

40

Context Maps

Further References:
Context Mapping at the DDD Crew on GitHub: github.com/ddd-crew/context-mapping

Visualizing Sociotechnical Architectures with Context Maps:
speakerdeck.com/mploed/visualizing-sociotechnical-architectures-with-context-maps

Alberto Brandolini: About Team Topologies and Context Maps:
blog.avanscoperta.it/2021/04/22/about-team-topologies-and-context-mapping/

About the author
Michael works as a Fellow for INNOQ in Germany. He has over 15 years of practical consulting
experience in software development and architecture. His main areas of interest are currently Domain-
Driven Design, Microservices, and Software Architectures in general. Michael is a regular speaker at
national and international conferences.

Twitter: @bitboss

LinkedIn: michael-ploed

https://github.com/ddd-crew/context-mapping
https://speakerdeck.com/mploed/visualizing-sociotechnical-architectures-with-context-maps
https://blog.avanscoperta.it/2021/04/22/about-team-topologies-and-context-mapping/
https://twitter.com/bitboss
https://www.linkedin.com/in/michael-ploed/

Adopt
Accelerator Programme

Join our Accelerator Programme to
speed adoption of Team Topologies
with help from Team Topologies
experts (TTVPs and authors)

Guided Workshops

Use our live online Guided
Workshop sessions to accelerate
adoption and increase practical
awareness of Team Topologies:

• Blockers to Fast Flow
• Define and Evolve a Platform
• Team Topologies Applied
• and more...

teamtopologies.com/adopt

https://teamtopologies.com/adopt

42

Stream Boundaries

Architect Your Business with
Domain-Driven Design and
Team Topologies
Nick Tune, Principal Consultant at Empathy Software

What does it take to become a high-performing technology-
savvy organization? Is it sufficient to just have a revolutionary
strategy, a few rockstar engineers, or cutting-edge tech? In
my experience, it’s extremely unlikely that being exceptional
at any one thing and mediocre at everything else is going to
result in high-performance. Excelling at many things, from strategy, to culture,
to technology, is essential. I would go further and say that doing each of those
things well is still not enough. It’s essential to see the big picture and connect
and co-design the dots of strategy, culture, and technology.

Why the combination of DDD and
Team Topologies works so well

If connecting the dots is essential, then combining ideas from different communities
and topics is also essential. That’s why the combination of Domain-Driven Design
(DDD) and Team Topologies is proving to be a successful formula. Both approaches
address different aspects of becoming a high-performing organization. They are two
pieces of the puzzle that fit together neatly. When you think about the architecture of
a business, all of the pieces fall into place.

Figure 1: Key elements of a
business architecture and their
relationships.

43

Stream Boundaries

A company offers one or more products to one or more markets to create a
value exchange. Value is created for customers and business value is received in
return. Digital products are powered by software, which has an architecture. And
the architecture is developed by engineering teams within the organization.

The relationship between the architecture of an organization and the architecture
of the software is crucial, as Conway’s Law implies. If a team owns a loosely-
coupled part of the architecture, they can make changes quickly and improve the
rate of product development. But if they own a part of the architecture that is
highly-coupled to other parts, every change will require coordination with other
teams and the rate of product development will be orders of magnitude slower.

So, how do we create loose coupling in software to enable more autonomous
teams? The answer can be found by reflecting on what a software system is.
A software system is a model of business concepts. In Uber’s software, they
have business concepts like trips and waypoints. The key to loose coupling is
to find business concepts that change together and situate them in the same
architectural component (like a microservice or monolith module). When changes
normally occur within a single component, owned by a single team, there will be
fewer technical and organizational dependencies.

Defining service boundaries, however, is a complex challenge that many
organizations struggle with. Understanding business processes and concepts
and modeling them as loosely-coupled architectural components is a little
more work than just underlining nouns and verbs in a requirements document.
This is where DDD aims to provide value, by being an approach to software
development that treats domain discovery and modeling as a primary concern,
with a particular emphasis on collaboration across disciplines.

EventStorming for fun and profit

One of the most DDD-esque activities is EventStorming, a collaborative domain
discovery and modeling approach invented by Alberto Brandolini. EventStorming
brings together domain experts, technology experts, and anybody else loosely
involved in the software development process. Gathered around a large amount
of wall space (minimum 8 meters), participants begin adding domain events, like
Order Placed and Balance Transferred, for parts of the system with which they

https://www.oreilly.com/library/view/escaping-the-build/9781491973783/ch01.html
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.youtube.com/watch?v=uamh7xppO3E&t=1602s
https://eng.uber.com/fulfillment-platform-rearchitecture/
https://www.eventstorming.com/

44

Stream Boundaries

are familiar. Soon, everybody’s domain knowledge is combined into one big

timeline representing end-to-end business processes.

Once formed, an event storm can be sliced up into chunks.1 Each chunk contains
a selection of business concepts that appear close together in the business
process, indicating that they are likely to change together. If you remember, this
was the key ingredient for creating a loosely-coupled system. So, the chunks on
an EventStorm, referred to as domains or subdomains, become the candidate
boundaries for the software architecture and teams. In any system, there will
always be some coupling and co-change.

Some further benefits of EventStorming are that it also improves cross-team
collaboration and visibility so that when multiple teams must work together
on a new feature, they’re better equipped to do this. Another benefit of
EventStorming is that teams learn more about the domain and become more
empowered to shape the products they are building. This is important because
whole-team collaboration has been identified as a top source of product
innovation.
1 Keep in mind that not all domains will appear as neatly-shaped rectangles. Some domains will
contain events appearing in different parts of an EventStorm, for example.

Figure 2: A small extract of a virtual EventStorm sliced into domains.

https://medium.com/agileinsider/what-we-learned-from-our-survey-of-550-product-managers-and-leaders-79340126ccab

45

Stream Boundaries

Validating domain boundaries with
Domain Message Flow Modeling

After identifying domain boundaries on an EventStorm, another DDD technique
can help you validate and refine the boundaries and identify the responsibilities
of each domain. Domain Message Flow Modeling is a technique for visualizing
the communication between different domains in end-to-end flows such as
placing an order. A Domain Message Flow uses commands, events, and queries
to represent collaboration in the domain. This notation maps directly onto a
software architecture, which helps to prove that the logical design will work in
reality. This technique is also great for uncovering hidden coupling at an early
stage.

After identifying and refining domain boundaries, Team Topologies enters the
picture and the focus shifts. The next step is to verify that the domain boundaries
will map onto an organizational structure that enables a fast flow of changes. The
first thing to consider is cognitive load: will each domain be manageable for a
long-lived team of 5-9 people? If it seems too big or complex, it will need to be
split up.

Figure 3: A simple Domain Message Flow Model example.

https://github.com/ddd-crew/domain-message-flow-modelling

46

Stream Boundaries

Assessing cognitive load with the
Bounded Context Canvas

The Bounded Context Canvas is a tool created by the DDD community which
maps out the purpose, responsibilities, collaborators, and complexity of each
service. This canvas can help you to see if a domain is too big or complex for a
single team.

After validating and refining your domain boundaries, you can build a team
topology around them. Each domain will be owned by a Stream-aligned,
Complicated Subsystem, or Platform Team and the interactions between them
will need to be carefully considered.

The design process may sound a bit waterfall, but it should be a continuous and
evolutionary process. Both the team boundaries and domain boundaries may
evolve and even diverge over time as knowledge is gained and the business
context changes. All of the techniques mentioned in this article should be part
of your toolbox and used as regularly as needed, not just at the beginning of an
initiative.

Figure 4: This Bounded Context Canvas shows a service with too many responsibilities, causing high
cognitive load.

https://github.com/ddd-crew/bounded-context-canvas

47

Stream Boundaries

Core Domain Charts provide a
strategic reference point

One other technique that often provides value is the Core Domain Chart,
another DDD community initiative. This tool helps you to visualize the strategic
importance of each domain and ensure that your domain and organizational
boundaries are optimized for maximum exploitation in core domains. Core
domains are those that form the core of the business strategy.

By laying out each domain on a Core Domain Chart and overlaying the Team
Topology, it becomes easier to identify mismatches which are likely to have
strategic consequences. For example, when a Stream-aligned core domain
team is collaborating with three Stream-aligned supporting domain teams, it’s
a warning sign that a core domain team has an excessive cognitive load and is
being slowed down by too much collaboration. Or, when multiple core domains
are all trying to evolve in different directions but they all depend on a Stream-
aligned supporting domain team that is becoming a bottleneck. These problems
are of high strategic importance because innovation in core domains is being
stifled, and the core domains are where competitive advantage is gained and
maintained.

Figure 5: This core domain chart
shows a bottleneck which may
impact three Stream-aligned
core domain teams.

https://github.com/ddd-crew/core-domain-charts

48

Stream Boundaries

Next Steps with DDD and Team Topologies

A high-performing organization excels in many areas. When used together,
Domain-Driven Design and Team Topologies provide key insights and techniques
for architecting your business if you understand their strengths and apply them
appropriately.

If you’re interested in learning more about Domain-Driven Design, check out
Welcome to DDD, and the DDD Starter Modeling Process. These are completely
free community initiatives created to help newcomers learn and apply DDD with
a hands-on focus. You may also want to check out my free Strategic DDD Kata
which provides an example Eventstorm that you can slice up into domains as well
as practice Domain Message Flow Modeling and Core Domain Charts.

About the author
Nick is the author/co-author of 3 books on architecture, organization design, and DDD: Architecture
Modernization: Product, Domain, and Team-Oriented; Patterns, Principles, and Practices of Domain-Driven
Design; and Designing Autonomous Teams and Services. Nick works with CTOs and technology leaders to
define strategy, shape architecture, and build high-performing continuous delivery teams.

Mastodon: @ntcoding

LinkedIn: nick-tune

https://github.com/ddd-crew/welcome-to-ddd
https://github.com/ddd-crew/ddd-starter-modelling-process
https://medium.com/nick-tune-tech-strategy-blog/strategic-domain-driven-design-kata-delivericious-b114ca77163
https://github.com/ddd-crew/domain-message-flow-modelling
https://github.com/ddd-crew/core-domain-charts
https://mastodon.social/@ntcoding
https://www.linkedin.com/in/nick-tune/

Transform
Enhance your transformation
program with ongoing expertise

Our expert practitioners provide
advice, insights, and guidance over
6-18 months as you define and
scale your transformation program.

Regular workshops and insights

Increase confidence in the success
of your transformation program via
regular sessions from TT experts:

• Workshops
• Q&A and talks
• Expert Insight sessions
• and more…

teamtopologies.com/transform

https://teamtopologies.com/transform

50

Stream Boundaries

Finding Good Stream
Boundaries with
Independent Service
Heuristics and User Needs
Mapping
Rich Allen and Matthew Skelton

When designing organizations for a fast flow of change, we
need to find effective boundaries between different streams
of change to ensure that we create good team boundaries.
This can be achieved by identifying potential boundaries
across services, domains, applications, or streams. This
article considers different ways that you could approach
boundary exploration.

Identifying boundaries with
Domain–Driven Design

When we first think of the terms ‘domain’ or ‘boundary’ in a
software context, it is likely that our first thoughts are of Domain-Driven Design
(DDD). The book by Eric Evans, Domain-Driven Design: Tackling Complexity
in the Heart of Software, published in 2003, has stood the test of time and
provides significant insights into how to structure software that can be aligned
with existing business domains. The high-level definition of the practice is ‘an
approach to developing software for complex needs by deeply connecting
the implementation to an evolving model of core business concepts’. With the
introduction of terms like ‘Bounded Contexts’ and ‘ubiquitous language,’ it
provides a vast library of practices and techniques to help practitioners tame the
complexities of modern software development. Since the original publication,
there have been numerous others that have attempted to simplify and make

https://www.goodreads.com/book/show/179133.Domain_Driven_Design
https://www.goodreads.com/book/show/179133.Domain_Driven_Design

51

Stream Boundaries

the concepts more digestible, for example, Domain-Driven Design Distilled by
Vaughn Vernon and The Anatomy of Domain-Driven Design by Scott Millet and
Sam Knight.

There have also been many contributions from the wider DDD community,
including new techniques such as EventStorming. The DDD Crew have a great
set of resources available which includes a DDD Starter Modeling Process,
Core Domain Chart examples, Context Map Cheat Sheets, an EventStorming
Glossary Cheat Sheet, a Bounded Context Canvas, and many more. The value
and benefits provided by a DDD approach are clear and taking the time to learn
each of the techniques will be a sound long-term investment. However, many
people struggle to get started adopting the practices as they can often be seen
as overwhelming.

Taking a different approach:
Independent Service Heuristics

Independent Service Heuristics (ISH) is a technique invented by the authors of
Team Topologies, Matthew Skelton and Manuel Pais. It has been subsequently
refined by others, including Team Topologies Valued Practitioners (TTVPs) and
members of the wider DDD community. You can find more information via the
Independent Service Heuristics GitHub repository which is openly provided via
the CC BY-SA license.

ISH is an intermediate approach that can help to introduce the principles of
DDD without some of the abstract terminology that can often be a barrier to the
adoption of DDD.

ISH provides simple rules-of-thumb or clues that can be used to identify
candidate value streams and domain boundaries by seeing if they could be run
as a separate SaaS/cloud product. It is intended to stimulate conversation and
provide a frame of thinking about basic domain concepts. It does not attempt
to be a perfect ‘catch-all’ tool. After using ISH to identify potential domain
boundaries or value streams, it often makes sense to then delve deeper into the
problem space using other DDD techniques.

https://www.goodreads.com/book/show/28602719-domain-driven-design-distilled
https://leanpub.com/theanatomyofdomain-drivendesign
https://github.com/ddd-crew
https://teamtopologies.com/partner-types/team-topologies-valued-practitioner-ttvp
https://github.com/TeamTopologies/Independent-Service-Heuristics

52

Stream Boundaries

Exploring boundaries using
Independent Service Heuristics

Independent Service Heuristics (ISH) starts with a simple question, ‘Could this
thing be run as a cloud-hosted (SaaS) service or product?’ On the surface,
this almost seems too simple. How can that one question provide answers that
help us to uncover potential domain boundaries and value streams? The terms
Cloud and Software as a Service (SaaS) have been in the public domain for
long enough that most people will understand what we mean when we ask the
question. And the answer to the question is often either yes, no, or maybe. We
can then follow up with a series of clarifying questions to determine whether the
area under focus could truly be a potential domain boundary.

Choosing an area of focus

In any process or methodology, getting started and taking the first step is
normally the hardest part. In the case of ISH, that first step is deciding where
to focus your attention. Essentially, we just need to choose an area of the
business that needs to be represented in software. This could be a user journey,
a ‘product’, a possible business domain, a software service, an entire software
application, a set of tasks for a single user persona, a possible value stream, etc.

The important thing here is that we actively choose an area and get started. The
process is quick enough that we won’t waste too much time if we happen to
choose an area that does not naturally fit a domain boundary but at least we can
discount it and move on to the next candidate.

An Independent Service Heuristics example

Imagine a fictional company called Footprints Tours which offers ‘alternative’
walking tours of cities exploring their social and cultural history. They provide
both guided and self-guided tours and have implemented a monolith website
and mobile application to serve all of their customer needs. The flow of
development has slowed down significantly as the code base has grown over
time. Using Independent Service Heuristics, they are looking to understand how
they might re-organize the teams and therefore the applications/services to
improve flow and alignment with the needs of their customer. The first step is to
capture some possible fracture planes, such as those shown in the image below.

53

Stream Boundaries

Uncovering potential domain or service boundaries

Once a candidate domain, service, application, or value stream has been
identified, the next step is to go through a series of questions to identify whether
or not we have found a good candidate for being a separate stream of change.
The high-level checklist of questions is as follows (as of January 2023):

1. Sense-check: Could it make any logical sense to offer this thing ’as a
service’?

• Is this thing sufficiently independent?
• Would consumers understand or value it?
• Would it simplify execution?

2. Brand: Could you imagine this thing branded as a public cloud service (like
AvocadoOnline.com 🥑)?

• Would it be a viable business (or ‘micro-business’) or service?
• Would it be a compelling offering?
• Could a marketing campaign be convincing?

Figure 1: An example of potential fracture planes for Footprints taken from one of our Guided Discovery
Workshops.

54

Stream Boundaries

3. Revenue/Customers: Could this thing be managed as a viable cloud service
in terms of revenue and customers?

• Would it be a viable business (or ‘micro-business’) or service?
• What would a subscription payment include?
• Is there a clearly defined customer base or segment?

4. Cost tracking: Could the organization currently track costs and investment in
this thing separately from similar things?

• Are the full costs of running this thing transparent or possible to discover?
Consider infrastructure, data storage, data transfer, license costs, etc.

• Is the thing too interconnected with other things in the organization? Or
fairly separate?

• Does the organization track this separately?

5. Data: Is it possible to clearly define the input data (from other sources) that
this thing needs?

• Is it dependent on lots of data from multiple sources? Or fairly independent?
• Are the sources internal (under our control) or external?
• Is the input data clean or messy?
• Is the input data provided in a self-service way? Can the team consume the

input data ’as a service’?

6. User Personas: Could this thing have a small/well-defined set of user types
or customers (user personas)?

• Is the thing meeting specific user needs?
• Do we know (or can we easily articulate) these user types and their needs?

7. Teams: Could a team or set of teams effectively build and operate a service
based on this thing?

• Would the cognitive load (breadth of topics/context switching) be bounded
to help the team focus and succeed?

• Would significant infrastructure or other platform abstractions be needed?

55

Stream Boundaries

8. Dependencies: Would this team be able to act independently of other teams
for the majority of the time, to achieve their objectives?

• Is this thing logically independent from other things?
• Could the team ‘self-serve’ dependencies in a non-blocking manner from a

platform?

9. Impact/Value: Would the scope of this thing provide a team with an
impactful and engaging challenge?

• Is the scope big enough to provide an impact? Would the scope be
engaging for talented people?

• Is there sufficient value to customers and the organization that the value
would be clearly recognized?

10. Product Decisions: Would the team working on this thing be able to ‘own’
their product roadmap and the product direction?

• Does this thing provide discrete value in a well-defined sphere of
execution?

• Can the team define their own roadmap based on what they discover
is best for the product and its users or is the team always driven by the
requirements and priorities of other teams?

Answer these questions for each of the candidate streams you have identified.
The more 'yes' or 'maybe' answers a possible stream has, the greater the chance
that you have found a good candidate for being a separate stream of change.1

1 N.B. The questions on dependencies, impact/value, and product decisions were added to ISH in
December 2021 as a result of working closely with the team at Zalora after some of our workshops. See
below for more details on how Zalora used the ISH approach.

https://www.zalora.com

56

Stream Boundaries

Delving Deeper

Answering these initial questions about the service should help to uncover
potential candidates for separate streams of change, but it may be useful to
consider other aspects too, such as whether the language used to describe
services is the same or different and where services are currently tightly-
coupled.

Case Study - using the Independent
Service Heuristics at Zalora

ZALORA is the leading fashion & lifestyle destination for Southeast Asia, carrying
an ever-expanding line-up of local and international brands. In 2021, as it
scaled by more than 60%, it was on a drive to enhance customer experience and
reduce time-to-market. As part of this, Zalora began exploring the use of Team
Topologies ideas and practices.

During a multi-day workshop with a wide range of attendees (led by Team
Topologies co-author Matthew Skelton), Zalora stakeholders were introduced to
the Independent Service Heuristics. They learned how to use the ISH approach
to find candidate flow-aligned boundaries and interpret the results, allowing the
insights to guide and inform conversations with different parts of the business.

Figure 2: Sample ISH answers taken from one of our Guided Discovery Workshops.

The highly visual style of the ISH exploration grid helps to facilitate discussions among stakeholders from
different parts of the organization.

New grid

Questions Parking Lot

8.Would this team be able to "own" their
own roadmap and the product direction?

(or would it be driven by other squads
departments)

7. Would the scope of this team leave
them an impactful and engaging

challenge?

6.Would this team be able to act
independent of other squads for the
majority of the time to achieve their

outcomes?

5.Would the cognitive load (breadth of
topics/context switching) be kept minimal

and help the team focus and succeed?

4.Can we easily identify the specific user(s)
and articulate their needs for this team?

3. Could this team operate with minimal
data (or well- defined data) from other

sources?

2. Can we easily track the investments
made into this team and measure its ROI

independently of other teams?

1. Could we justify the investment of this
team as a viable business decision?Stream Candidate

 in

Each row in the table represents one stream candidate (what we currently think of as
squads)
Each column represents one heuristic that we want to evaluate against the stream
candidate
For each stream candidate, go through the heuristics and apply a YES (green) or NO
(red) post- it with your name on it.

even if a stream candidate is fully green, it might not become its own squad
immediately (i.e. do not worry about resourcing/scaling for now)
If heuristics seem unclear, see full reference for more explanation: :
https://docs.google.com/spreadsheets/d/1nPGFR-
kR8mXtNtsiT33AD6paLRkW_TUcpCSJZUHKefM/edit#gid=0
feel free to add more / modify and call it out in our channel

1.

2.

3.

Could we justify the investment of this team as a viable business decision?
Can we easily track the investments made into this team and measure its ROI
independently of other teams?
Could this team operate with minimal data (or well- defined data) from other sources?
Can we easily identify the specific user(s) and articulate their needs for this team?
Would the cognitive load (breadth of topics/context switching) be kept minimal and
help the team focus and succeed?
Would this team be able to act independent of other squads for the majority of the
time to achieve their outcomes?
Would the scope of this team leave them an impactful and engaging challenge?
Would this team be able to "own" their own roadmap and the product direction? (or
would it be driven by other squads departments)

Full reference: https://docs.google.com/spreadsheets/d/1nPGFR-
kR8mXtNtsiT33AD6paLRkW_TUcpCSJZUHKefM/edit#gid=0

1.
2.

3.
4.
5.

6.

7.
8.

Scoring instructions Revised heuristics

Colour coding for scoring:

Copy from here:

-

Rashi

-

57

Stream Boundaries

After the workshop, Zalora ran further internal sessions, expanding the use of ISH
to find further possible flow-aligned boundaries. The straightforward language
of ISH helped to facilitate conversations between many different parts of Zalora,
including: technology, product, warehouse, logistics, and business strategy. The
Independent Service Heuristics acted as a frame or ‘lens’ through which to talk
about priorities, flow, and ownership. The very visual style of the ISH exploration
grid provided a way to frame conversations:

Figure 3: Screenshot of the results of an expanded Independent Service Heuristics discovery and
discussion at Zalora.

58

Stream Boundaries

Zalora used the ISH questions so extensively that they contributed three new
heuristics to the ISH collection: Dependencies, Impact/Value, and Product
Decisions.

“We first used the Independent Service Heuristics
as part of Team Topologies during our workshop with
Matthew Skelton in August 2021. The framework
and shared language of the ISH approach were
transformational to the discussions we later had
about our organization and team structure. Not only
did this approach help us discover and align on new
stream-aligned Tteams, but it also helped us redefine other teams
as Platform, Complicated Subsystem, and Enabling Teams. Thanks to
the Team Topologies and ISH framework, our team structure is more
autonomous, meaningful, and productive.

We were able to take this simple but powerful framework in its visual,
grid-based format and have further discussions which led to us
expanding the scope to reflect additional angles that we knew would
be essential for sustainable team boundaries. It was great to be able
to contribute our updates to the ISH code repo so others can make
use of our insights!”

— Liam Hutchinson, Group Director of Product, Zalora

Exploring boundaries from a user
perspective with User Needs Mapping

The ISH approach looks at existing services, applications, or value streams to
determine whether they might form good boundaries for teams. However, a
slightly different perspective can be provided by User Needs Mapping.

The term User Needs Mapping was coined by Rich Allen, a TTVP, during the
preparation of some workshops focused on Team Topologies. It is based on one
of the early stages of the Wardley Mapping process. Wardley Mapping builds
upon ancient principles taken from Sun Tzu’s The Art of War. It provides a great

https://teamtopologies.com/all-ttvp/rich-allen-ttvp
https://teamtopologies.com/
https://learnwardleymapping.com/

59

Stream Boundaries

way for business leaders to map out a strategy by taking into account several
factors including purpose, landscape, climate, doctrine, and leadership in a
continuous cycle of observing, orienting, deciding, and acting (the OODA loop
from John Boyd).

One of the core principles (and potentially the most intimidating part) of
Wardley Mapping is the use of an evolutionary axis that runs from Genesis
on the left through Custom Built, Product, and finally Commodity on the right
of the map. Items are plotted on the map with respect to how ‘evolved’ the
item is. Something new to the world would be added to the Genesis column,
whereas something widely available and undifferentiated would be plotted in
the Commodity column. This allows the mapper and colleagues taking part in
the mapping session to begin strategic conversations about the current state of
items on the map and also discuss how they may evolve in the future (based on
market trends etc). This means they can make more informed, strategic decisions
about how to plan for the future.

The power of Wardley Mapping lies within this unique ability to capture
‘movement’ or evolution over time. Changing the position of an item changes
its meaning on the map and puts the focus of the conversation onto the
map. However, in much the same way as DDD, people can find the practice
intimidating in the first instance, since there is so much to take in. In the same
way that ISH provides a lightweight alternative to introduce DDD concepts, User

Figure 4: A completed Wardley Map showing the evolutionary axis.

60

Stream Boundaries

Needs Mapping provides a lightweight entry into the world of Wardley Maps.
The Wardley Mapping process consists of 5 steps:

1. Define Your ‘True North’ (i.e. our customer/user).
2. User’s Needs – Needs to be met.
3. Capabilities – How you’re going to meet your user’s needs.
4. Value Chain – A list of users, needs, and capabilities becomes a value

chain when you add dependency relationships.
5. Wardley Map – A value chain becomes a Wardley Map when you

determine how evolved everything is and position it accordingly (left-to-
right) on the evolutionary axis.

The term User Needs Mapping attempts to capture the first 4 steps of the
Wardley Mapping process as we believe it can provide initial value for identifying
potential team boundary issues without progressing into step 5 and the
evolutionary world of Wardley Maps.

Mapping User Needs to explore boundaries

User Needs Mapping begins by simply asking the question ‘Who are your users/
customers?’. It is still surprising how many people are unable to concisely answer
that seemingly simple question. Many people might know who their users are but
haven’t documented it or shared it with anyone. User Needs Mapping provides
a simple canvas to begin the process and starts by capturing the user and their
needs.

Figure 5: Capturing users and user needs in a simple visual way.

61

Stream Boundaries

After capturing some user needs, the next phase is mapping the dependency
chain. This phase essentially uses the vertical ‘value chain’ axis of a Wardley Map
without the evolutionary horizontal axis. The map is ‘anchored’ by the user at the
top of the canvas and the user's needs are linked to each user. Focusing on one
need at a time, we plot what services, dependencies, or business capabilities are
used to meet that particular need. The vertical axis represents how visible the
capability is to the user.

A User Needs Mapping example

The same fictional company Footprints Tours introduced in the previous section is
now looking to use User Needs Mapping to understand how it might re-organize
the teams to improve flow and alignment with the needs of their customer.

We could begin the exploration with a user journey such as ‘Finding a self-
guided tour’. In this scenario, we can imagine what would be required when a
user needed to find a good self-guided tour. The first service they might use
is a search engine such as Google or Bing (an external service). For our ‘Find
a tour’ service to appear in the search engine results, we would need some
Search Engine Optimization (SEO) and this would lead the user to that page on
our website. Once the user has landed on the ‘Find a tour’ page, they might be

Figure 6: An example early stage User Needs Map highlighting potential team boundaries.

62

Stream Boundaries

encouraged to use the Tour Search service (an internal service dependency)
to find a tour that looks good for them. The Tour Search service might require
a database that contains data about the tours. The database is provided as
a Platform as a Service offering from a cloud provider which then becomes
a further external dependency that can be mapped on the canvas. As each
dependency becomes less visible to the end user, it is plotted further down the
vertical axis.

After performing an initial mapping process, we can explore overlaying the
Team Topologies team types to highlight where we think some possible team
boundaries might exist.

After this initial session and seeking feedback, we might decide to ‘drill in’ to
some areas such as the website to identify which parts of that system might
be owned by specific teams and therefore be a good candidate for stream-
alignment.

Figure 7: A User Needs Map after overlaying some initial Team Topologies team shapes.

63

Stream Boundaries

As we can see, the database is potentially a shared dependency between the
two stream-aligned teams. This raises questions such as whether data should be
stored in a single database. Should the data be owned by a database platform
team? Is there data that is only relevant to the individual streams? Could this
database be split into two databases provided by a platform but owned by the
streams?

After we have drilled down the dependency chain as far as we want to go, we
then look at the next user need and repeat the process. As we do this, we begin
to uncover and visualize the dependencies between the services and capabilities
within our organization. The more we do this, the more we might spot patterns or
opportunities to decouple services to provide faster flows of change or introduce
other types of teams to help reduce the cognitive load of stream-aligned teams.

Figure 8: The User Needs Map has evolved after identifying potential opportunities for Stream-aligned and
Platform Teams

64

Stream Boundaries

The User Needs Mapping Process

In summary, the User Needs Mapping process is as follows:

1. Create a list of customer/user types.
2. Identify user needs (for each type of user).
3. Identify what capabilities/components/services are required to meet each

user need.
4. Overlay potential team boundaries using the Team Topologies shapes.
5. Annotate the map with questions about suspect dependencies.
6. Discuss how the dependencies might be broken and capture your

thoughts on other ways to organize the dependencies.
7. Repeat steps 1 to 5 as necessary until you identify potential team

boundaries that ‘feel’ right.

Delving Deeper

After you have completed the User Needs Mapping process, the next logical
step may be to introduce the horizontal evolutionary axis of Wardley Mapping. It
can often be an interesting thought experiment to consider whether products or
services you are currently ‘custom building’ with specific teams should actually
be purchased as a ‘product’ or even used as a ‘commodity’. Or maybe the
products and services you are building now will evolve within the next couple
of years? This might prompt the question of whether to start preparing for the
inevitable evolution now.

Summary

In this article, we looked at how we could use two approaches, Independent
Service Heuristics and User Needs Mapping, as a lightweight introduction/
alternative to DDD concepts and to explore application and service boundaries
that could lead to good stream and team boundaries. With the goal of achieving
a fast flow of change, taking a team-first approach and understanding how
those teams interact is of utmost importance. Why not give Independent Service
Heuristics and User Needs Mapping a try the next time you need to identify
boundaries within your organization?

65

Stream Boundaries

About the authors
Rich Allen is Head of Consulting at Conjurer Solutions and is a Team Topologies Valued Practitioner
(TTVP) helping to introduce organizations to Team Topologies patterns and principles through talks and
guided workshops. Rich has been developing software and helping organizations to implement lean and
agile ways of working for over two decades.

Twitter: @rich_allen

LinkedIn: richardallen

Matthew Skelton is co-author of Team Topologies: organizing business and technology teams for fast
flow. Head of Consulting at Conflux, he specializes in Continuous Delivery, operability, and organization
dynamics for software in manufacturing, ecommerce, and online services, including cloud, IoT, and
embedded software.

Mastodon: @matthewskelton@mastodon.social

LinkedIn: matthewskelton

https://twitter.com/rich_allen
https://www.linkedin.com/in/richard-allen-a0020b52/
https://mastodon.social/@matthewskelton
https://www.linkedin.com/in/matthewskelton/

Read the books

teamtopologies.com/books

https://teamtopologies.com/books

67

About the authors
Matthew Skelton is co-author of Team Topologies: organizing
business and technology teams for fast flow. Recognised by
TechBeacon in 2018 and 2019 as one of the top 100 people
to follow in DevOps, Matthew curates the well-known
DevOps team topologies patterns at devopstopologies.
com. He is Head of Consulting at Conflux and specialises
in Continuous Delivery, operability, and organisation
dynamics for modern software systems.

Mastodon: @matthewskelton@mastodon.social
LinkedIn: linkedin.com/in/matthewskelton/

Manuel Pais is co-author of Team Topologies: organizing
business and technology teams for fast flow. Recognized
by TechBeacon as a DevOps thought leader, Manuel is
an independent IT organizational consultant and trainer,
focused on team interactions, delivery practices and
accelerating flow. Manuel is also a LinkedIn instructor on
Accelerating Continuous Delivery in the Enterprise.

Twitter: @manupaisable | LinkedIn: linkedin.com/in/manuelpais/

About Team Topologies
Team Topologies is a clear, easy-to-follow approach to modern software delivery with an
emphasis on optimizing team interactions for flow. Four fundamental types of team — team
topologies — and three core team interaction modes combine with awareness of Conway’s
Law, team cognitive load, and responsive organization evolution to define a no-nonsense,
team-friendly, humanistic approach to building and running software systems.

Devised by experienced IT consultants Matthew Skelton and Manuel Pais, the Team Topologies
approach is informed by the well-known DevOps Team Topologies patterns (also authored and
curated by Matthew and Manuel). Matthew and Manuel have worked with many organizations
around the world to help them shape their teams for modern software delivery, and Team
Topologies is the result of that experience.

https://teamtopologies.com/book
https://techbeacon.com/devops-100-top-leaders-practitioners-experts-follow
https://techbeacon.com/devops-100-top-leaders-practitioners-experts-follow
http://devopstopologies.com/
http://devopstopologies.com/
https://confluxdigital.net/
https://mastodon.social/@matthewskelton
https://linkedin.com/in/matthewskelton/
https://teamtopologies.com/book
https://techbeacon.com/devops/devops-100-top-leaders-practitioners-experts-follow-0
https://www.linkedin.com/learning/devops-foundations-accelerating-continuous-delivery-in-the-enterprise
https://twitter.com/manupaisable
https://linkedin.com/in/manuelpais/
https://teamtopologies.com/people
http://devopstopologies.com/

organizing business and technology teams for fast flow:
book + training + consulting

teamtopologies.com

Copyright © 2017-2023 Team Topologies Ltd. All Rights Reserved.

Registered office: West One, 114 Wellington Street, Leeds, LS1 1BA, UK

Registered in England and Wales, number 13684580. VAT registration number GB393377361

https://teamtopologies.com

